facts about earth part 2
100 Facts About the Earth
Earth needs no introduction.
From its origin to its inevitable future, the story of Earth is the greatest story ever told.
So if you’re looking to boost your knowledge of our planet…
You’ll really enjoy this list of 100 Earth facts.
Let’s get started.
1. The Big Bang created all matter in the universe
Ready? Start your stopwatch. In just a fraction of a second, all matter in the universe was created from the Big Bang.
The physics we use do not apply to the creation of the universe. From the initial phases of the Big Bang, the universe now holds a mammoth collection of galaxies, stars, planets, and other solar remnants.
We know this because we observe them using the Kepler and Hubble Telescopes. On the grand scale of things, Earth is tiny in comparison.
2. The universe is expanding into the unknown
The universe is immeasurable in size. And for all we know, the universe is expanding indefinitely into limitless bounds.
We know the universe is still expanding because we measure the redshift of light. Redshift means that light stretches when objects move away from you.
Alternatively, it’s blue shift when moving toward. It’s like the Doppler Effect which uses sound waves, but redshift uses light.
3. Welcome to the Milky Way Galaxy
Earth belongs to the Milky Way galaxy. It’s home to over 200 billion stars and ours is the Sun. A supermassive black hole is at the galactic center.
Galaxies are flat because things that rotate flatten out on the rotational access. For example, Earth is longer at the equator axis because of its rotation.
Galaxies are also rotating around some point in space. This is likely where the Big Bang occurred.
4. Gravity sculpts solar systems
What brings order to Earth is gravity. Gravity is always at work. Not only did gravity sculpt our universe, but it’s also why rocks fall downhill.
Gravity is the constructor of our planet 4.6 billion years ago. Depending on where you are on Earth, gravity varies.
For example, gravity is 9.764 m/s2 in Peru and 9.834 m/s2 in the Arctic. This is because mass (like mountains) and the bulge at the equator amplifies it.
5. Constructing a planet
The core accretion model describes the creation of our planet and solar system. Solar wind swept in hydrogen and helium closer to the sun because these particles were smaller in size.
But the sun couldn’t pull in heavier elements because of their mass. They spiraled and gelled together into planets of their own. Earth coalesced to form spheres of its own. The heaviest material like iron and zinc sank to the core.
Finally, lighter material remained on top to form a crust. The two opposing forces of Jupiter and the sun counteracted each other stabilizing the terrestrial planets and an asteroid belt between them.
6. Third rock from the sun
Earth lands in the third spot from the sun. Fusion reactions power the sun. By fusing hydrogen with helium, the sun releases vast amounts of energy toward Earth.
It takes light 8 minutes and 20 seconds (1 astronomical unit) to reach us. Earth is the only planet known to harbor life because of the healthy portion of UV rays that heats it.
Earth has had 2 major phases. A brief period of heating up from the “heavy bombardment stage”. And everything since which cooled the Earth. The early stage was fast and catastrophic with tons of impacts and tremendous heating.
7. Earth is a red marble
If you lived on Earth 4 billion years ago, it would have looked like a completely different planet. Earth was in a molten state. Rivers of lava flowed with scorching hot temperatures.
Earth spun with incredibly high velocity, nearly 3 times as fast as it did today. Like a scene from a Michael Bay movie, meteors and asteroids pelted Earth for millions of years.
This violent era was the late heavy bombardment stage – a sight unseen from the human eye. From red to the blue marble, it was the dawn of a new age because of the formation of the moon.
8. Clues to our origin
How do we know the late heavy bombardment stage was a violent time in Earth’s history? Earth has erased all the evidence of any impacts because plate tectonics destroy, create and recycle rocks.
This is why gaze toward the moon. Because plate tectonics don’t exist on the moon, the impacts from this violent period are still visible as craters. There are other clues about the formation of our solar system.
For example, we probe orbiting comets to study the origin of water. Finally, we explore Mars to delve into the necessary conditions for life to exist in the universe.
9. Earth’s interior has layers
The Earth is separated by distinct layers with a core, mantle and crust. Imagine Earth as a chocolate-covered cherry.
The core (2,890-6,360 km) of Earth is like the pit of a cherry because it’s solid. The mantle (35-2,890 km) is like the cherry which is mostly solid and behaves like a viscous fluid.
Finally, the crust (0-35 km) is the outermost shell. It’s rigid because lighter material remained at the surface. But the heavier material like iron and zinc sank to the core.
10. We use earthquakes to peek into Earth’s core
The ground-rattling tremors of an earthquake generates unimaginable amounts of energy. During an earthquake, a break occurs on a fault. This is the driving force that generates seismic waves which pulse through the crust and mantle.
Depending on the type of rock, waves either speed up or slow down. If the rock is cold, waves travel quickly. But if rocks are hot, waves travel slowly.
From seismic stations around the world, we listen to the ground shaking like a tape recorder. From these tomography readings, we produce 3D models of the Earth’s interior.
11. Earth meet moon
The moon has been a close companion for as long as Earth’s formation. The early Earth spun so fast that a day lasted just 6 hours.
After the moon collided with Earth, it tilted it on its axis giving seasons. In tandem, they control tides, slow rotational speed, and stabilize Earth from wobbling.
There’s just one moon that orbits Earth. But if you stepped foot on Jupiter, you would see 63!
12. The 4 seasons
The formation of the moon had profound effects on balancing Earth’s climate. Not only did the moon slow down Earth’s rotation, but the impact tilted Earth on its axis.
This collision promptly delivered seasons to Earth. If it wasn’t for the moon, Earth’s climate would be unpredictable and have wild shifts.
This is because the gravitational pull of the moon has a stabilizing effect on Earth preventing it from wobbling like a top.
13. Earth’s poles are north and south
If you stick a pencil directly through the Earth at the point of rotation, these two points are the North and South poles. Geographically speaking, it’s where lines of longitude meet.
If you were to travel to the North Pole, it’s nearly impossible to install a physical marker there. This is because the North Pole is covered by moving ice in the Arctic Ocean.
But the South Pole is currently positioned on the continental landmass of Antarctica. Even though Antarctica moves only a few meters a year, we have marked the true South with a permanent marker station.
14. Earth is the densest planet
Terrestrial planets tend to be rich in metals and silicate rocks. Earth is the largest and densest of all terrestrial planets. If you crunch the numbers, Earth is jam-packed with mostly iron (35%), oxygen (30%), silicon (15%) and magnesium (13%).
Finally, nickel (2%), sulfur (2%), calcium (1%), and aluminum (1%) make up most of the rest. In terms of mass, gas giants like Jupiter dwarf Earth.
The colossal heavyweight Jupiter’s radius is nearly 70,000 km compared to Earth’s measly 6,371 km.
15. Our magnetic field
Earth’s magnetosphere stretches tens of thousands of kilometers in space. Like a force field, it protects us with a never-ending stream of charged particles.
Inside Earth, the solid core heats the outer liquid layer. As a result, this produces a geodynamo and convection currents which is our magnetic field.
Without a magnetic field, our skin would be unguarded from harmful radiation. Also, solar flares from the sun would constantly cut off our communication systems.
16. A healthy dose of solar radiation
Our sun is 99% of the total mass of the solar system. It’s this solar energy that heats the Earth. The balance of Earth’s temperature relies on how much energy enters and leaves the planet’s system.
When incoming energy from the sun is absorbed by the Earth system, Earth warms. When the sun’s energy is reflected back into space, Earth avoids warming.
When absorbed energy is released back into space, Earth cools. Natural and human causes can influence Earth’s energy balance.
17. Earth is in the Goldilocks zone
Lucky for us, Earth is in the Goldilocks zone. This means that it’s within the range where liquid water can persist.
In other words, because Earth receives a hearty portion of the sun’s rays (1 astronomical unit), it can sustain life. Even here in our Milky Way galaxy, at least 10 possible habitable planets are within the Goldilocks zone.
This means that only light years away, there is a glimmer of hope that other life exists.
18. Nitrogen outnumbers oxygen 3 to 1
Earth possesses a massive supply of nitrogen in its atmosphere. By far, it’s the largest outnumbering oxygen and carbon.
Why so much nitrogen? Simply, it’s just because it’s what was here when the Earth formed. But only is there a sizable amount of nitrogen in the atmosphere, but it’s entangled in our soil fertilizing plants.
Earth’s atmosphere composition largely consists of nitrogen, oxygen, argon, carbon dioxide, and water vapor.
19. Our changing atmosphere
Earth’s early atmosphere was filled with methane and ammonia. CO2 played a dominant role early in Earth’s history.
But after oxygen filled the air, it created a habitable planet. Since early Earth, oxygen levels have changed significantly.
For example, free oxygen levels peaked just before the age of dinosaurs. Now, Earth’s blue skies are picturesque. We have oxygen to thank for its impeccable beauty.
20. Our first oceans